

Ce document a été numérisé par le <u>CRDP de Clermont-Ferrand</u> pour la

Base Nationale des Sujets d'Examens de l'enseignement professionnel

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

MINISTÈRE DE L'ÉDUCATION NATIONALE

BREVET PROFESSIONNEL MONTEUR DEPANNEUR EN FROID ET CLIMATISATION

Session 2011

E.1 B ETUDE TECHNOLOGIQUE DES INSTALLATIONS

Documents techniques	DT 1/17 à DT 17/17
Extrait du cahier des charges d'un supermarché avant modification	DT 2/17 à DT 3/17
Conditions déterminantes pour la sélection de l'évaporateur	DT 4/17 à DT 8/17
Conditions déterminantes pour la sélection du condenseur	DT 9/17 à DT 12/17
Conditions déterminantes pour la sélection du détendeur	DT 13/17 à DT 15/17
Schéma général de l'installation SGI	DT 16/17 (A3)
Schéma de principe de l'installation SPI	DT 17/17 (A3)

ВР	MONTEUR DEPAR	NEUR EN FROID ET CLIMATISA	TION	DOSSIER TECHNIQUE Session 2011
		E.1-B (U12): TECHNOLOGIE		
Durée	e de l'épreuve : 2h30	Coéf: 5		DT1/17

DESCRIPTION DES EQUIPEMENTS

ATTENTION à l'environnement immédiat, les installations tomberont sous le coup de la réglementation en vigueur en ce que concernent les nuisances sonores. Il appartiendra aux preneurs d'ordres de prendre les mesures (faibles niveaux sonores, barrières antibruit, pièges à sons...) pour respecter la réglementation.

1. BASES DE CALCUL

• Conditions d'ambiance ETE (moyennes/24 h)

2. EQUIPEMENT PRODUCTION FRIGORIFIQUE

Les puissances frigorifiques devront être sélectionnées à un régime de 2°C inférieur au poste d'évaporation le plus bas pour le côté basse pression. Le régime de condensation devra se baser sur un écart avec la température d'entrée d'air au condenseur de 10°C pour les circuits positifs.

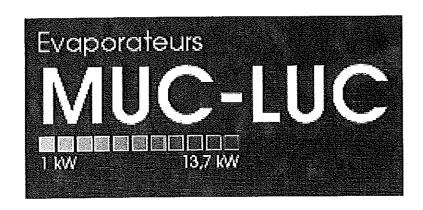
Productions frigorifiques positives (à contrôler par l'installateur)

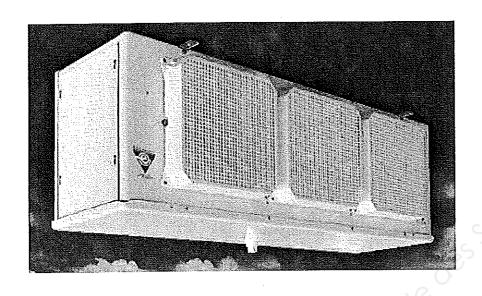
1 solution sera chiffrée:

Une centrale positive neuve au R404 A neuve pour l'ensemble des besoins. Elle sera installée dans le local technique PROFROID ou HK, composé de 4 compresseurs à piston 6F-40.2Y – 40P ou similaire.

Régime de condensation des centrales + 45 [°C].

- Sous refroidissement de liquide (solution de base)
 - Le sous refroidisseur de liquide sera calculé pour un liquide à 0 [°C] mais réglé dans un premier temps à 10 [°C].
 - Les postes négatifs seront sous-refroidis au travers d'un même type d'échangeur par la centrale positive.
 - Les lignes liquides seront isolées.
 - Les échangeurs seront de types multitubulaires.


Condenseurs et aéroréfrigérant (Les condenseurs multi circuits sont interdits)


- Les condenseurs seront implantés en toiture.
- Ils reposeront sur des châssis métalliques (plan d'implantation à fournir).
- Ils seront du type à Air, équipés de ventilateurs hélicoïdes à entraînement direct (vitesse maxi de rotation 550 tr/mm ou 12 PSL pôles, C7 de chez PROFROID ou similaire).
- L'écart "température de condensation/Température d'entrée d'air " ne devra pas être supérieur à 15 [°K] pour les condenseurs positifs.

BP MONTEUR DEPANNEUR EN FROID ET CLIMATISATION E.1 - B (U12) Dossier technique Session 2011 DT 2/17

- La hauteur séparant la batterie de la toiture sera au moins de 1 m. (voir plan).
- Le diamètre des hélices n'excédera pas 900 mm.
- Chaque ventilateur sera cloisonné pour éviter la mise en rotation inverse et un bypass de la batterie pendant l'arrêt.
- L'hélice ne devra pas dépasser la virole pour éviter la prise au vent.
- Il sera intercalé entre châssis support et condenseur des plots antivibratoires efficaces (A déterminer en fonction du condenseur).
- Les caractéristiques des appareils proposés devront avoir fait l'objet d'une qualification (T.U.V, EUROVENT...).
- Les châssis métalliques sont à prévoir dans votre lot (voir plan).

CONDITIONS DETERMINANTES POUR LA SELECTION DE L'EVAPORATEUR

Caractéristiques techniques à respecter

Réfrigérant R 404A

Température de la chambre froide 9 [°C]

Puissance frigorifique 2,38 [kW]

Nombre d'appareils

Pas d'ailettes 6,35 [mm]

Delta T1 6 [K]

Hygrométrie relative 85 [%]

Les évaporateurs cubiques ventilés de la gamme MUC-LUC sont destinés aux applications commerciales de réfrigération ou de conservation à basse température. Les 48 modèles de base de la gamme MUC-LUC couvrent une plage de puissances de 1 à 13,7 kW.

DESIGNATION ...

MUC 320 R

Pos d'oilettes R/E = 4,23 mm

Evaporateur

Modèle

L/C = 6,35 mm

DESCRIPTIF ...

CARROSSERIE

Carrosserie robuste et esthétique, en tôle acier entièrement prélaqué blanc.

EGOUTTOIR

• Egouttoir à coins arrands éliminant les zones de réfention, foujours propices au développement de germes pathogènes, et assurant une sécurité parlaite par l'obsence d'angles vits ou coupants.

- La gomme MUC-LUC est équipée de moloventificieurs hélicoldes à graissage longue durée, côblés en usine :
- -Ø 300 mm : type classique, 230 V 50-60 Hz, monophasé, moteur fermé, classe 8, profecteur thermique inferne. La grife en plastique, conque avec des redresseurs de fiets d'air pour assurer une forte projection d'air, est conforme aux normes de protection.
- Ø 400 et Ø 450 mm : type classique, 230-400 V 50-60 Hz, triphosé, moleurs fermés ovec trous de purge, IP54, closse F, protecteurs thermiques internes à roccorder,
- Les grilles en plastique (Ø 450 mm) et en fil d'accier plastifiés (Ø 400 mm) sont conformes aux normes de protection.

ACCESSIBILITE

Les panneaux latéraux et l'égauttoir facilement démontables, permettent un accès aisé à l'ensemble des éléments de l'évaporateur (botterie, motoventilateurs, résistances de déginage, raccordements...).

ECHANGEUR A TRES HAUTE PERFORMANCE

- Les batteries ailstées de la gamme MUC-LUC, très performantes et compactes soni conçues à partir d'alèttes aluminium au pas de 423 au 6,35 mm, à profit sinusoldal, associées à des tubes aux structures internes rainurées.
 L'alimentation des batteries se foit par un distributeur à diaphragme mis en place en usine.

DEGIVRAGE

- Les résistances électriques blindées sont logées dans des encoches sur les faces avant et arrière de la bafferie. Cette disposition ne nécessite aucun espace tatéral pour leur remplacement, sout pour MUC-R et MUC-L équipés du lè ETK
- Une des résistances est fixée dans l'égoutloir.
- Les résistances sont raccordées en usine, sur un bornier logé dans une boite étanche. L'aimentation est prévue :
- 230 V monophosé pour les LUC 155 E, 210 E, 295 E et 150 C, 205 C.
- 230 400 V triphosé pour les LUC 350 E à 1030 E et 290 C à 1025 C.
- Les condensais sont récupérés par l'égouttoir et évacués vers le roccord d'écoulement lorgement dimensionné (Ø 1' G)

CERTIFICATIONS

EUROVENI: Les performances publiées de nos produits sont certifiées conformes aux normes européennes EN328. ISO 9001: Notre entreprise est certifiée par la LROA car elle répond aux critères d'assurance qualité ISO 9001 : 2000. RoH\$ - WEEE: Nos produits sont conformes aux directives européennes 2002/95/CE et 2002/96/CE, concernant les équipements électriques et électroniques.
CE: Nos produits sont conformes aux directives européennes.
GO\$1: Nos produits sont conformes aux normes CEL

OPTIONS ...

BATTERIE

Protection des allettes.

Eau glycolée, fluide calopateur (nous consuiter). Optimisation 17744 (nous consuiter).

DÉGIVRAGE

TH 5709L; thermostat unipolaire inverseur de fin de dégirrage à +12 °C (±3 °C) et de remise en route retardée de la ventitation à +2 °C (±3 °C). THS 5708L; thermostat unipolaire de sécurité de chauffe des résistances à +24 °C (±3 °C), conseilé avec dégirrage électrique. Gaz chauds (IUC) (contenie aux partieurs des électrics cars chauds électrics : résistances électrics de contenies à cars chauds électrics : résistances électrics de contenies à cars chauds électrics : résistances électrics de contenies à cars de contenies

(batterie : gaz chauds, égoutloir : résistances électriques). Electrique otlégé.

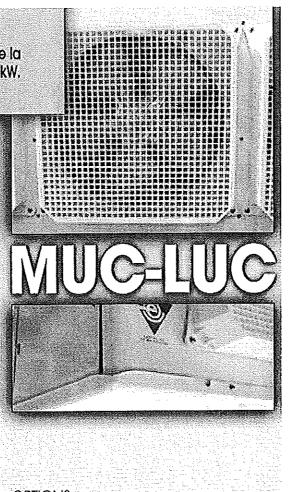
ElU

VENTILATEURS

Motoventilateurs spécioux pour utilisation 60 Hz. Motoventilateur monophasé 230 V 50 Hz.

KIT

Dégirrage électrique MUC-R et MUC-L: (espace latéral nécessaire au montage).


AUTRES OPTIONS

Nous consulter.

Fluides naturels

BP MONTEUR DEPANNEUR EN FROID ET CLIMATISATION E.1 - B (U12) Dossier technique Session 2011

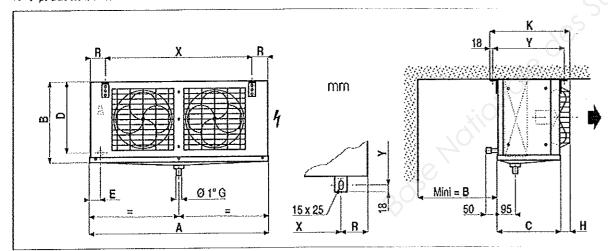
CARACTERISTIQUES TECHNIQUES ...

t _{A1}	MUC	#E +E	IK.		
	+10	+2	-5	-10	-25°C

MUC L													6,3	5 mm
Mooèles		MUCL	140	195	280	315	415	515	615	635	655	665	775	955
Puissance	D11 = 8 K - \$C2(1)	kW	1,70	2,07	3,17	3,46	4,52	5,49	6,42	6,89	7,41	9,00	10,61	12,20
Eau glycolée *	DI1 = 8 K - \$C2(1)	kW	1,62	•	3,33		4,53		6,88	•	8,38	-	-	
Surface		m2	5,17	7.54	9.33	11.66	15,98	18.64	22,43	27,80	33,70	33,70	28,04	33,65
Volume circuits	-	dm3	1,5	23	25	3.3	2,4	5.0	6.0	6,9	8.4	8.4	7,5	9,0
Débi doir		m3/h	1217	1239	2267	2075	2561	3250	3574	3435	3524	4436	7073	7873
	Projection d'air (2)	m	12	12	12	12	12	12	12	12	12	12	28	45
	NoxØ	mm	1 x 300	1 x 300	2 x 300	2 x 300	2 x 300	3 x 300	3 x 300	3 x 300	3 x 300	4 x 300	2x400	2 x 450
Ventateur	0001010011	W Total	145	145	290	290	290	435	435	435	435	580		•
5040 Hz 1500 tr/min	230 V/1/50 Hz -	A Total	0.85	0.85	1.70	1.70	1,70	2,55	255	2.55	255	3,40		•
1000 lighter	1003.004.0011-	W mox			•		•	•	•			•	2 x 360	2 x 350
	400 V/3/50 Hz -	A max (3)					•	•	•	-			2 x 1,0	2×10
		Nb	3	3	3	3	3	3	3	3	3	3	3	3/6
Déginoge — — — — — — — — — — — — — — — — — — —		W Total	420	630	780	960	1320	1560	1860	2550	3150	3150.	2340	1740/3430
é'ectrique EIK (4)	230 V/1/50 Hz	A Toloi	1,8	2.8	3,4	4.2	5.8	6.8	8.1		•	•	•	
Lin(4)	400 V/3/50 Hz	A Tolol		•		•	٠			3,7	4,6	4,6	3.4	25/50
Pośds net		kg	16	18	22	27	32	43	44	55	68	70	63	73
	A	mm	575	575	981	931	1235	1355	1665	1998	2348	2348	1657	1657
	8	mm	400	464	400	400	400	454	400	400	400	400	495	590
	¢	mm	365	365	365	365	365	365	355	355	365	365	482	482
	0	mm	355	419	355	355	355	419	352	350	350	350	447	543
	E	mm	42	37	89	89	89	89	110	110	110	110	110	110
Dimensions	H	mm	53	53	53	53	53	53	53	53	53	53	68	78
	K	mm	456	456	456	456	455	456	456	456	456	456	596	636
	R	mm	72	72	122	122	122	182	147	147	147	147	147	147
	X	mm	416	416	722	722	976	976	1355	1685	2036	2036	1356	1356
	Y	mm	412	412	412	412	412	412	412	412	412	412	536	536
Erirée		Ø (5)	D 1/2°	01/2	D 1/2°	D 1/2	D 1/2"	D 1/2"	D 1/2	01/2	D 7/8°	D 7/8*	D 7/8'	D1 1/8
Sortie		Ø ODF (6)	1/2	1/2	5/8*	5/8*	3/4"	3/4*	7/8	7/8	7/8'	7/8*	1 1/8	1 1/8'

(1) Voir pages "ANNERS".

(2) Viesse d'ai résiducité : 0.75 m/s en conformét avec la normé.


(3) Réglage des profections coche les surcharges Pour des températures d'air "11" autres que +20 °C, multiplier les intensités par le rapport 293/(273 + "11") est afin d'action la volaur appresimative de l'intensité après mise en température de la chambre.

(4) Oprin déglinage électrique.

(5) Distributeur : môte à traver.

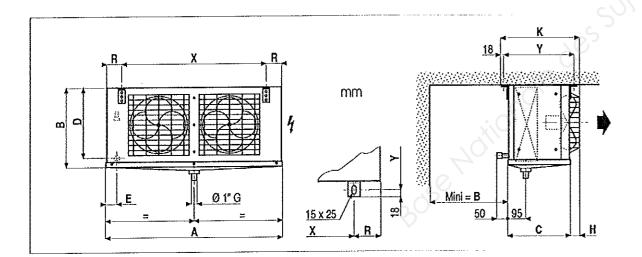
(6) OOF : ferrolle pour recevoir le tube de même d'amôtre.

* Eou glycolfie : Ruide : Pourcerlage da glycol = 30 % - Temperature entitée fluide = - 8 ° C - Temperature socie fluide = - 4 ° C Au Temperature stoche entitée = + 2 ° C - Humidi lératire = 85 % - Autres conditions : nous contribée.

OPTIONS ...

	BAE	WCO	CO2	21H	HG1	E1Ú	M60*	MM5*	EIK
MUC L	0	nous consulter	-	0	•	0	0	0	0

[&]quot;Moteurs triphosés uniquement


BP MONTEUR DEPANNEUR EN FROID ET CLIMATISATION E.1 - B (U12) Dossier technique Session 2011 DT 7/17

CARACTERISTIQUES TECHNIQUES ...

t _{A1}	MUC	R +E	IK.		
,,,	+10	+2	-5	-10	-25°C

MUC R													4,2	3 mm
Modèles		MUC R	145	200	285	320	420	520	620	640	660	670	780	960
Puissance	D11 = 8 K - SC2 (1)	k₩	1,85	2,31	3,48	3,83	4,94	5,89	7,17	8,23	9,56	10,89	12,01	13,67
Surface		m2	5,5	8.7	10	13,4	18,2	21,4	25,8	40,2	48,7	48,7	32,3	38,6
Volume circuits		dm3	1,1	1,8	1.9	2.6	35	4.0	4.8	6,9	8.3	8.3	6,0	7.2
Débit d'air		m3/h	1246	1239	2336	2076	2562	3252	3696	3264	3486	4168	7095	7895
	Projection d'air (2)	m	12	12	12_	12	12	12	12	12	12	12	28	45
	NoxØ	mm	1x300	1 x 300	2 x 300	2 x 300	2 x 300	3 x 300	3 x 300	3 x 300	3 x 300	4 x 300	2 x 400	2 x 450
Ventilateur	02014115015	W tolol	145	145	290	290	290	435	435	435	435	580	•	•
50:60 Hz 1500 hr/min	230 V/1/50 Hz	A Total	0,85	0.85	1,70	1,70	1,70	255	255	255	255	3,40		<u> </u>
(SOO HATTER	1001//0/5015	W max	•	-	•	-	•	٠		•		•	2 x 360	2 x 350
	400 V/3/50 Hz	A max (3)	•	•	•		٠		•	•	•	•	2x10	2 x 1.0
		Nb	3	3	3	3	3	3	3	3	3	3	3	3/6
Déglyroge électrique EIK (4)		W Total	420	630	780	960	1320	1560	1860	2550	3150	3150	2340	1740/3480
électrique E1K (4)	230 V/1/50 Hz	A Total	1.8	28	3,4	4,2	5.8	6.8	8,1	•	•	•	•	
EIK (9)	400 V/3/50 Hz	A Total	-	•	-			-		3.7	4,6	46	3.4	25/5,0
Poids net		kg	16	18	22	27	32	43	44	56	68	70	63	73
	A	mm	575	575	981	981	1235	1355	1665	1998	2348	2348	1657	1657
	В	mm	400	464	400	400	400	464	400	400	400	400	495	590
	C	mm	355	365	365	365	365	365	365	365	365	365	482	482
	D	mm	355	419	355	355	355	419	352	350	350	350	447	538
	£	mm	42	39	89	89	89	89	110	110	110	110	110	110
Dimensions	H	mm	53	53	53	53	53	53	53	53	53	53	68	78
	K	mm	456	456	456	456	456	456	456	456	456	456	596	606
	Ř	mm	72	72	122	122	122	182	147	147	147	147	147	147
	X	mm	416	416	722	722	976	976	1356	1686	2036	2036	1356	1356
	Y	mm	412	412	412	412	412	412	412	412	412	412	536	536
Entrée		Ø (5)	D 1/2"	D 1/2'	01/2	01/2	D 1/2"	D 1/2°	D 1/2"	D 1/2"	D 7/8°	D 7/8'	D 7/8°	D11/8'
\$ortie		Ø ODF (6)	1/2	1/2	5/8"	5/8"	3/4'	3/4"	7/8*	7/8	7/8"	7/8'	1 1/8'	1 3/8*

OPTIONS ...

	BAE	WCO	CO2	2TH	HG)	EIV	M60*	MM5*	EIK
MUC R	0		•	0	•	0	0	00	0

^{*} Moteurs triphosés uniquement

BP MONTEUR DEPANNEUR EN FROID ET CLIMATISATION E.1 - B (U12) Dossier technique Session 2011 DT 8/17

⁽¹⁾ Voir pages 'ANNDES'.
(2) Visses d'ai résidués : 0.25 m/s, en conforméé cueo la norme.
(3) Régioge des protections contre les surcharges. Pour des températures d'air 'hi' outres que +20 °C, multiplier les intensités par le rapport 293/(273 + 'hi') ced afra d'obtenir la valeur approximative de l'intensité après mée en température de la chambre.
(4) Option déglyinge d'escrique.
(5) Déributeur : male à broser.
(6) ODF : femelle pour recevoir le tube de même d'amètre.

CONDITIONS DETERMINANTES POUR LA SELECTION DU CONDENSEUR DE LA CENTRALE POSITIVE

R 404A

Caractéristiques techniques à respecter

Réfrigérant

Nombre d'appareils

Delta θ1 15 [K]

Ventilateurs en parallèles

Pression acoustique LP < 35 [db(A)]

Débit massique de FF (sources BE) qmFF = 0,4015 [kg/s]

Tableau des valeurs (diagramme enthalpique) issu du cycle mono étagé au R404A de la

centrale positive (sources bureau d'étude)

N°	Désignation	Enthalpie
1	Début de compression	377,27
2	Fin de compression	420,19
3	Entrée du condenseur	412,11
4	Sortie du condenseur	265,62
5	Entrée détendeurs	252,45
6	Entrée évaporateurs	252,45
7	Sortie évaporateur	367,78
	Softie evaporatedi	[kJ/kg]

BP MONTEUR DEPANNEUR EN FROID ET CLIMATISATION E.1 – B (U12) Dossier technique Session 2011 DT 10/17

Les condenseurs à air de la nouvelle gamme NEOSTAR sont destinés aux applications de réfrigération et de conditionnement d'air pour une Installation en extérieur. Les 470 modèles de base de la gamme couvrent une plage de puissance de 18 à 1250 kW.

DESIGNATION ...

	PE	06D	P16	B 3
N (Power Normal) E (Power Edra) U (Power Utra)	SU	16Y	P14	A2

\$N (Sience Normal)

\$E (Sience Edito) \$U (Sience Ulito) Nombre de pôles

D = couplage triangle
Y = couplage étaile

Type de module

Nombre de ventilateurs

Disposition des ventilateurs : L: ventialeurs en Igne P: ventialeurs en paratièle

DESCRIPTIF ...

ECHANGEUR DE HAUTE TECHNOLOGIE

- Les condenseurs à cir de la gamme NEOSTAR sont équipés d'une batterie alletée à haute performance conçue à partir d'altettes aluminium profisées serties sur des tubes ouivre roinurés.
 Pour cette demière génération de condenseur, une nouvete atlette optimisée a été spécialement développée pour amétaire les performances. l'efficacité et la compacifé des appareits.
 Des revêtements spéciaux pour la batterie sont disponibles (protection Vinyle (option BAE), protection Bygold Polyal XT (BXT)) pour assurer une meitieure résistance confire la corrosion des des differentes consistants.
- dans des atmosphères agressives

VENTILATION

- La gamme de condenseurs à air NEOSTAR est équipée en version s'andard de motoventilateurs à rotor extérieur bi-titesse (couplage triangle et étoile).
- Neostar Power: les motoventitateurs de la gamme Neostar Power sont équipés de moteurs:

 Ø 910 mm; 08P (D/Y) = 890/ 685 tr/min.

 Ø 800 mm; (moteur rentacé): 08P (D/Y) = 910/ 730 tr/min.

 Ø 800 mm; 08P (D/Y) = 895/ 685 tr/min.

- Neostar Silence : les motoventilateurs de la gamme Neostar Silence sont équipés de moteurs Ø 800 mm:
- -08P (D/Y) = 660/ 515 tr/min. -12P (D/Y) = 435/ 330 tr/min. -16P (D/Y) = 360/ 255 tr/min.
- Ces moteurs sont du type 400½ triphasé 50½, fermés, iP54, classe F, conformes à la norme EN 60629, graissage longue durée. Lorsque la température dépasse 60½C, nous consulter.
 Les motoventificiteurs sont côblés en version standard et roccordés en usine, comme suit : un boilier électrique pour les modèles L (moteurs en ligne).
 deux boiliers électriques pour les modèles P (moteurs en paratèle).
 Nous pouvons sur demande les livrer non-côblés (option 5CU).
 Les grilles de protections sont conformes à la norme NF EN 294.
 En cos d'institation ovec sens d'oir horizontal, prendre en compte la direction des vents des models protections des vents des models productions de périodices propriés de fermess lors de périodices.

- dominant pour éviter tout risque de rupture d'hétice (nétices tournant à l'envers lors de période
- d'oriet) ou tout d'emorroge difficite des moteurs à l'oble vitesse de rotofion.

 Des motoventitateurs à commutation électronique (EC) sont également asponibles en option. pour permettre d'obtenir un fonctionnement des plus optimisé de votre installation.

- Venitations tensions spéciales:
 M60: Motoventilateurs 400 V/3/60Hz, IP54, classe F, version en 05P Ø 800 mm
 M26: Motoventilateurs 230 V/3/60Hz, IP54, classe F, version en 05P Ø 800 mm
 M25: Motoventilateurs 230 V/3/60Hz, IP54, classe F, version en 05P Ø 800 mm
 M25: Motoventilateurs 230 V/3/60Hz, IP54, classe F, version en 05P Ø 812P Ø 800 mm

CARROSSERIE

- La corrosserie est réalisée en tôle d'acier galvanisée et galvanisée pré-loquée de couleur grise RAL7035.
 L'emploi d'une visserie en acier inoxydoble lui confère une excellente résistance

- dia corrosion (norme ISO 7253) ainsi qu'une esthétique durable.
 Tous les composants ant passé avec succès les tests de corrosion en brouttard safin.
- · Les appareils sont livrés vissés sur socie bois

Note : Une sélection plus étendue de modèles est disponible sur notre logiciel, afin de loujours mieux répondre à vos attentes.

Cette gamme NEOSTAR est divisée en deux séries de modèles, pour encore mieux coller aux besoins exprimés par les différentes applications :

neostar

La série "Silence" est parfaitement adaptée aux applications commerciales de centre-ville et toute autre application où un faible niveau sonore est primordial. Le niveau de pression acoustique donnée à 10 mètres selon les standards d'Eurovent descend Jusqu'à 19 dB(A) par module I

neostar

POWER

La série Power permet de délivrer encore plus de puissance sur un encombrement réduit. La puissance unitaire pour un appareil peut monter usqu'à 1250 kW l

Une option moleur à commutation électronique (EC) est proposée sur l'ensemble de nos modèles pour participer ayec les utilisateurs à la réduction de l'empreinte énergétique des installations. En effet, l'utilisation de ce type de moteurs permet de réduire de manière très significative la consommation énergétique pour une pulssance donnée. A ce titre, la gamme NEOSTAR (att partie des produits labellisés "E Solution".

Solutions Efficacité énergétique Bas niveau sonore

11/17

BP MONTEUR DEPANNEUR EN FROID ET CLIMATISATION E.1 - B (U12) Dossier technique Session 2011

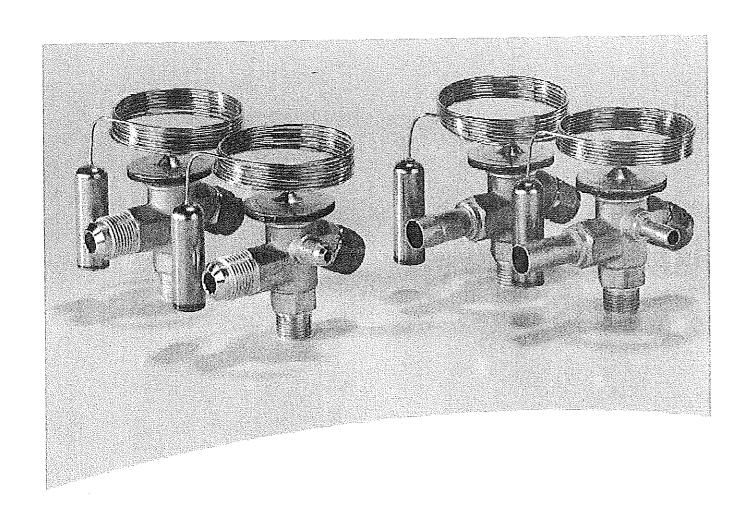
NEOSTAR SILENCE - SU .. P

3 1	_	\sim	О	\sim	\sim
	0	0	0	0	0

Modeles	SILEIN	,E • 0	SU 16Y		SU 12Y	SU 16Y	SU 12Y	\$U 16Y P02 D2	SU 12Y P02 D1	SU 12Y PO2 D2	SU 16Y PO4 A1	SU 16Y PO4 81	SU 16Y PO4 82	\$U.12Y PO4 A1	SU 16Y PO4 D1	SU 12Y P04 B1
700385	6.69 (5.66)		PO2 A1	P02 81	P02 A1	pper-occupact 2010s	Mary Sour	Str Sandayan		Non-Francis		20 mg/ 20 20 20 20 20 20 20 20 20 20 20 20 20		90,6	94,6	102,8
Puttonce(1)	DI1 = 15K	kW	35,8	41,1	45,3	47,3	61.A	51,6	59,5	67,7	71,6 269	82,1 336	89,1 505	269	443	336
Surtaco		rn2	135	168	135	224	168	335	224	336	37	46	iii	37	62	45
Volume lubes de	culs_	qu3	18	23	18	31	23	45	31	45	20207	22232	19937	28693	24275	31104
CAPE QQ1		m3/h	10103	11116	14345	12138	15552	11269	16754	15731		25	25 25	32	25	32
Acoustque	lp(2)	d8(A)	22	22	29		27	_22	29	29	25 57		57	64	57	64
-sounder	Lw	d8(A)	54	- 54	<u> 61</u>		61	_54	61	61 2	- 0/ - 4		<u>0;</u> 4	4	<u>\</u>	4
Ventilateurs	Ø830	Nb	2	2	2	2	2	2	2	359	436	399	4)5	734	396	720
Moleurs (3)		W foi.	202	199	357	198	350	199	352		A	A	A A	A A	A	A A
Classe énergêto	₽U 9		Α	A	<u>A</u>	A	A	A	A	A	2712	3342	3342	2712	4312	3342
longueur lotote		mm	1512	1842	1512	2312	1842	2312	2312	2312	48	513	564	458	575	513
Poids rel		kg	269	293	269	318	293	353	318	358	400	313		400	310	010
Modèles			SU 16Y P04 D2	SU 16Y P06 A1	SU 16Y P06'A2	SU 12Y PO4 B2		SU 12Y PO4 D2	SU 12Y P06 A1	SU 16Y P06 D1	SU 16Y PO8 A1	SU 12Y POS B1	SU 16Y P06 D2	SU 16Y POS B1	SU 12Y POS D1	SU 16Y P10 A1
Puissonce (1)	D11 = 15K	kW	103,2	107,5	115,4	117,2	121,1	135,3	135,9	141,9	143,3	154,2	154,8	164,2	178,5	179,1
Surface		m2	673	404	605	505	673	673	404	673	538	505	1007	673	673	673
Volume fuces cir	ouits	om3	92	55	83	69	92	92	55	92	74	67	138	92	92	92
Dété doir		m3/h	22535	33310	26235	28365	25939	31452	43039	36413	43414	46556	33303	44464	60261	50517
200.00.	lp(2)	dB(A)	25	27	27	32	32	32	34	27	ঠি	34	27	28	34	29
Acousique	Lw	d8(A)	57	59	59	£4	64	64	65	59	60	લ	59	60	-66	6]
VenSclours	Ø 800	Nb	4	6	6	4	4	4	6	6	8	b	6	8	6	10
Moleurs (3)		₩ ioi.	398	607	611	735	745	718	1101	593	809	1081	597	793	1056	1011
Closse énergéte	3.39		A	A	A	A	A	Α	A	Α	A	<u>A</u>	A	A	A	<u>A</u>
tongueur lotole	-1	mm	4312	3912	3912	3342	3342	4312	3912	6312	5112	4342	6312	6342	6312	6312
Poids net		kg	645	673	735	554	618	646	673	827	693	733	934	955	829	1075
Mod@es			SU 12Y	SU 16Y	SU 12Y	SU 16Y	SU 12Y	SU 12Y	SU 16Y	\$U 16Y	SU 12Y	SU 16Y P12 A2	SU 12Y P08 B2	SU 16Y	SU 16Y	SU 12Y
			P08 A1	P08 D1	P06 D2	P10 B1	P08 B1	P06 D3	PIZAL	P10 82	PIOAT	L 17 1/7	LOO DZ	P12B1	P14 A1	P10 B1
	DT1 = 15K	kW	Section of the second	CONTRACTOR OF	nie de la company de la compan	P10 B1 205,3	PUS B1 205,6	P06 D3 211,8	P12 A1 2149	P10 82 222,7	226,5	230,9	234,4	246,3	250,7	257,1
Puistonce (1)	DT1 = 15K	kW m2	181,2	189,2	203,0 1009	SAME AND SERVED	60.162.9611.551011.012	Sand Samuel Commercial Co.	E-syk-ssek-se	2011 100 - 100 C	1000 4 15 50 6 6 C	\$1.00 CONTRACTOR	80000100 0000 0000	YESS-WITHOUT	Salar Salar Para	
Puistonce (1) Surface		m2	1 81,2 538	189,2 877	203,0 1009	205,3	205,6	211,8	214,9	222,7	226,5	230,9	234,4	246,3	250,7	257,1
Puissance (1) Surface Valume luibes cir		m2 dm3	181,2 538 74	189,2 877 123	203,0 1009 138	205,3 841 115	205,6 673	211,8 1345	214,9 807	222,7 1261	228,5 673	230,9 1211	234,4 1009	246,3 1009	250,7 942	257,1 841
Puissonce (1) Surface	വർ	m2 dm3 m3/h	181,2 538 74 57385	189,2 897 123 45560	203,0 1009 138 47193	205,3 841	205,6 673 92	211,8 1345 185	214,9 807 111	222,7 1261 173	226,5 673 92	230,9 1211 166	234,4 1009 138	246,3 1009 138	250,7 942 129	257,1 841 115
Puissance (1) Surface Valume luibes cir	cuts Lp(2)	m2 dm3 m3/h d8(A)	181,2 538 74 57385 35	189,2 897 123 45550 28	203,0 1009 138 47193 34	205,3 841 115 55581	205,6 673 92 62203	211,8 1345 185 44497	214,9 807 111 60620	222,7 1261 173 49842	226,5 673 92 71732	230,9 1211 166 52470	234,4 1009 138 56730	246,3 1009 138 66697	250,7 942 129 70724	257,1 841 115 77760
Puissonce (1) Surface Volume fuices ca Débit d'air Acousique	outs ip(2) iw	m2 dm3 m3/h d8(A) d8(A)	181,2 538 74 57385 35 67	189,2 897 123 45550 23 60	203,0 1009 138 47193	205,3 841 115 55581 29	205,6 673 92 62203 35	211,8 1345 185 44497 34	214,9 807 111 60620 30	222,7 1261 173 49842 29	226,5 673 92 71732 35	230,9 1211 166 52470 30	234,4 1009 138 56730 35	246,3 1009 138 66697 30	250,7 942 129 70724 30	257,1 841 115 77760 35
Puissonce (1) Surface Volume fubes cir Débit d'air Acousique Ventilateurs	cuts Lp(2)	m2 dm3 m3/h d8(A) dB(A) Nb	181,2 538 74 57385 35 67 8	189,2 897 123 45550 23 60 8	203,0 1009 138 47193 34 66	205,3 841 115 55581 29 61	205,6 673 92 67203 35 67	211,8 1345 185 44497 34 66	214,9 807 111 60620 30 62	222,7 1261 173 49842 29 61	226,5 673 92 71732 35 68	230,9 1211 166 52470 30 62	234,4 1(09 138 56730 35 67	246,3 1007 138 66677 30 62	250,7 942 129 70724 30 62	257,1 841 115 77760 36 68
Pussonce (1) Surface Volume fuices of Débit d'air Acoustique Ventifateurs Moleurs (3)	ip(2) tw Ø80)	m2 dm3 m3/h d8(A) d8(A)	181,2 538 74 57385 35 67 8 1458	189,2 897 123 45550 23 60 8 791	203,0 1009 138 47193 34 66 6	205,3 841 115 55581 29 61 10 997	205,6 673 92 62203 35 67 8	211,8 1345 185 44497 34 66 6	214,9 807 111 60620 30 62 12	222,7 1261 173 49842 29 61	226,5 673 92 71732 35 68 10	230,9 1211 166 52470 30 62 12	234,4 1(09 138 56730 35 67 8	246,3 1009 138 66697 30 62 12	250,7 9.42 129 70724 30 62 14	257,1 841 115 77760 35 68 10
Pussonce (1) Surface Volume fulces of Débit d'air Acoustique Ventifateurs Moleurs (3) Classe énergétie	ip(2) tw Ø80)	m2 dm3 m3/h d8(A) dB(A) Nb W tot.	181,2 538 74 57385 35 67 8 1458 A	189,2 897 123 45550 23 60 8	203,0 1009 138 47193 34 66 6	205,3 841 115 55581 29 61 10	205,6 673 92 6223 35 67 8 1441	211,8 1345 185 44497 34 66 6 1093	214,9 807 111 60620 30 62 12 1214	222,7 1261 173 49842 27 61 10	226,5 673 92 71732 36 68 10 1835	230,9 1211 166 52470 30 62 12 1222	234,4 1009 138 56730 35 67 8 1472	246,3 1009 138 66697 30 62 12 1197	250,7 942 129 70724 30 62 14 1416	257,1 &41 115 77760 36 68 10 1801
Pussonce (1) Surface Volume fuices cir Débit d'air Acoustique Ventilateurs Mateurs (3) Classe énergétic Langueur totale	ip(2) tw Ø80)	m2 dm3 m3/h d8(A) dB(A) Nb	181,2 538 74 57385 35 67 8 1458	189,2 897 123 45550 23 60 8 791	203,0 1009 138 47193 34 66 6 1077 A	205,3 841 115 56581 29 61 10 997 A	205,6 673 92 62203 35 67 8 1441 A	211,8 1345 185 44477 34 66 6 1093 A	214,9 897 111 60620 30 62 12 1214 A	222,7 1261 173 49642 29 61 10 1012 A	226,5 673 92 71732 36 68 10 1835 A	230,9 1211 166 52470 30 62 12 1222 A	234,A 1009 138 56730 35 67 8 1472 A	246,3 1009 138 66697 30 62 12 1197 A	250,7 942 129 70724 30 62 14 1416 A	257,1 &41 115 777&0 35 68 10 1801 A
Pussance (1) Surface Volume lubes cir Débit d'air Acoustique Ventilateurs Moleurs (3) Classe énergétie	ip(2) tw Ø80)	m2 dm3 m3/h d8(A) dB(A) Nb W tot.	181,2 538 74 57385 35 67 8 1458 A 5112	189,2 897 123 45550 23 60 8 791 A 8433*	203,0 1009 138 47193 34 66 6 1077 A 6312	205,3 841 115 55581 29 61 10 997 A 7998* 1188	205,6 673 92 62203 35 67 8 1441 A 6342 955	211,8 1345 185 44497 34 66 6 1093 A 6312 1042 Y SUI	214,9 897 111 60620 30 62 12 1214 A 7512 1281	222,7 1261 173 49842 27 61 10 1012 A 7998* 1317	226,5 673 92 71732 36 68 10 1835 A 6312 1075	230,9 1211 166 52470 30 62 12 1222 A 7512 1433	234A 1009 138 56730 35 67 8 1472 A 6342	246,3 1009 138 66697 30 62 12 1197 A 9342	250,7 9.42 129 70724 30 62 14 1416 A 8712	257,1 841 115 77760 35 68 10 1801 A
Puissonce (1) Surface Volume fuices de Débit d'air Acoustique Ventilateurs Moleurs (3) Closse énergétit Longueur totale Poids no?	ip(2) tw Ø80)	m2 dm3 m3/h d8(A) dB(A) Nb W tot.	181,2 538 74 57385 35 67 8 1458 A 5112 867	189,2 897 123 45560 23 60 8 791 A 8433* 1083	203,0 1009 138 47193 34 66 6 1077 A 6312 934	205.3 841 115 55581 29 61 10 997 A 7998' 1188	205,6 673 92 62203 35 67 8 1441 A 6342 955 Y SU 12 1 P10 8	211,8 1345 185 44497 34 65 6 1093 A 6312 1042 Y SU.1 2 P12	214,9 897 111 60820 30 62 12 1214 A 7512 1281 27 SU B1 P1	222,7 1261 173 49842 29 61 10 1012 A 7998* 1317	226,5 673 92 71732 36 68 10 1835 A 6312 1075	230,9 1211 166 52470 30 62 12 1222 A 7512 1433	234,A 1009 138 56730 35 67 8 1472 A 6342 1057	246,3 1009 138 6607 30 62 12 1197 A 9342 1418 SU 12Y P14 B1 359,9	250,7 942 129 70724 30 62 14 1416 A 8712 1446 SU12Y P16 B1 411,3	257,1 841 115 77760 35 68 10 1801 A 7978* 1188 SU 12Y P16 B2
Pussonce (1) Surface Volume fuices of Débit d'air Acoustique Ventilateurs Moleurs (3) Closse énergétit Longueur totale Poidsine! Modélés Aussonce (1)	(CAS) Lp(2) LW Ø833	m2 dm3 m3/h d8(A) dB(A) Nb W tot. mm	181,2 538 74 57385 35 67 8 1458 A 5112 869 SU 16Y P12 B2	189,2 897 123 45550 23 60 8 791 A 8438* 1083	203,0 1009 138 47193 34 66 6 1077 A 6312 934 \$U.166	205.3 841 115 55581 29 61 10 997 A 7998' 1188	205,6 673 92 62203 35 67 8 1441 A 6342 955 Y SU 12 1 P10 8	211,8 1345 185 44497 34 65 6 1093 A 6312 1042 Y SUI1 2 P12	214,9 897 111 60620 30 62 12 1214 A 7512 1281 2Y SU B1 P1	222,7 1261 173 49842 29 61 10 1012 A 7998* 1317	226,5 673 92 71732 36 68 10 1835 A 6312 1075	230,9 1211 166 52470 30 62 12 1222 A 7512 1433	234,4 1009 138 56730 35 67 8 1472 A 6342 1057 SU 16Y P16 82	246,3 1009 138 6607 30 62 12 1197 A 9342 1418 SU 12Y P14 B1 359,9 1177	250,7 942 129 70724 30 62 14 1416 A 8712 1466 SU12Y P16 B1 411.3 1346	257,1 841 115 77760 35 68 10 1801 A 7978* 1188 SU 12Y P16 B2 468,7 2018
Pussonce (1) Surface Volume fuices of Débit d'air Acoustique Ventilateurs Moleurs (3) Classe énergétit Longueur totale Poidsine! Modèlles Pussonce (1) Surface	(CURS) 1p(2) 1w 2080) QUE DIT = 15K	m2 dm3 m3/h d8(A) d8(A) Nb W tot. mm kg	181,2 538 74 57385 35 67 8 1448 A 5112 847 SU 16Y P12 B2 267,2	189,2 897 123 45550 23 60 8 791 A 8433* 1083 SU12Y P12A1 271,8	203,0 1009 138 47193 34 66 6 1077 A 6312 934 SU 161 P16 A 286,5	205.3 841 115 55581 29 61 10 997 A 7998' 1188 (SU 16' 1 P14 B 287.4	205,6 673 92 6223 35 67 8 1441 A 6342 555 Y SU12 1 P10 8	211,8 1345 185 44477 34 66 6 1093 A 6312 1042 Y SU1 2 P12 0 308	214,9 807 111 60620 30 62 12 1214 A 7512 1281 22Y SU BI PI 9,6 3	222,7 1261 173 49842 27 61 10 1012 A 7998* 1317	226,5 673 62 71732 36 68 10 1835 A 6312 1075	230,9 1211 166 52470 30 62 12 1222 A 7512 1433 501.6Y P16.B1 328,4	234,4 1009 138 56730 35 67 8 1472 A 6342 1057 SU 16Y, P16 B2 356,3	246,3 1009 138 6607 30 62 12 1197 A 9342 1418 SU 12Y P14 B1 359,9	250,7 942 129 70724 30 62 14 1416 A 8712 1446 SU12Y P16 B1 411,3	257,1 841 115 77760 35 68 10 1801 A 7978* 1188 SU 12Y P16 B2
Puisonce (1) Surface Volume fuces di Débit d'ar Accustique Ventioteurs Moteurs (3) Closse énergéti Longueur totale Poids net Modèles Aussance (1) Surface Volume fuces of	(CURS) 1p(2) 1w 2080) QUE DIT = 15K	m2 dm3 m3/h d8(A) dB(A) Nb W tot. mm kg	181,2 538 74 57385 35 67 8 1458 A 5112 849 SU 16Y P12 B2 267,2	189,2 897 123 45550 23 60 8 791 A 8433* 1083 SU12Y P12A1 271,8 807	203,0 1009 138 47193 34 66 6 1077 A 6312 934 SU 161 P16 A 286,5	205.3 841 115 55581 29 61 10 997 A 7998' 1188 (SU 16' 1 P14 B 287.A 1177 162	205,6 673 92 67203 35 67 8 1441 A 6342 955 Y SU 12 P10 B 293,0 1261	211,8 1345 185 44477 34 66 6 1093 A 6312 1042 Y SU11 2 P12 0 308	214,9 807 111 60620 30 62 12 1214 A 7512 1281 22Y SU BI PI 8,5 30 18	222,7 1261 173 49842 27 61 10 1012 A 7998* 1317 116Y S 4 82 P 11.8 765	226,5 673 92 71732 36 68 10 1835 A 6312 1075	230,9 1211 166 52470 30 62 12 1222 A 7512 1433 501.6Y P16.B1 328.4 1346	234,4 1009 138 56730 35 67 8 1472 A 6342 1057 SU 16Y, P16 B2 356,3 2018	246,3 1009 138 6607 30 62 12 1197 A 9342 1418 SU 12Y P14 B1 359,9 1177	250,7 942 129 70724 30 62 14 1416 A 8712 1466 SU12Y P16 B1 411.3 1346	257,1 841 115 77760 35 68 10 1801 A 7978* 1168 SU 12Y P16 B2 468,7 2018 277 113451
Pusance (1) Suface Valume hubes of Débit d'air Acoustique Ventilateurs Maleurs (3) Classe finerigéti Langueur talale Pods no! Madèles Aussance (1) Suface of Suface o	(CURS) (p(2)) (w) (0.80) (QUE) (DI) = 15K	m2 dm3 m3/h d8(A) dB(A) Nb W tot. mm kg	181,2 538 74 57385 35 67 8 1458 A 5112 849 SU 16Y P12 B2 267,2 1514 208	189,2 897 123 45550 23 60 8 791 A 2439* 1083 SU.12Y P12.A1 271.8 807	203,0 1009 138 47193 34 66 6 1077 A 6312 934 SU 161 P16 A 286,5 1076	205.3 841 115 55581 29 61 10 997 A 7998' 1188 (SU 16' 1 P14 B 287.A 1177 162	205,6 673 92 67203 35 67 8 1441 A 6342 955 Y SU 12 P10 B 293,0 1261	211,8 1345 185 44477 34 66 6 1093 A 6312 1042 Y SU11 2 P12 0 308	214,9 807 111 60620 30 62 12 1214 A 7512 1281 227 SUBI P1 1,6 3 39 1 8 :	222,7 1261 173 49842 27 61 10 1012 A 7998* 1317 16Y S 4 82 P 11.8 766	226,5 673 92 71732 36 68 10 1835 A 6312 1075	230,9 1211 166 52470 30 62 12 1222 A 7512 1433 328,4 1346 185	234,4 1009 138 56730 35 67 8 1472 A 6342 1057 SU 169; P16 82 356,3 2018 277 79748 31	246,3 1009 138 6607 30 62 12 1197 A 9342 1418 SU 12Y P14 B1 359,9 1177 162 108865 37	250,7 942 129 70724 30 62 14 1416 A 8712 146 5U 12Y P16 B1 1346 185 124417 38	257,1 841 115 77760 35 68 10 1801 A 7778* 1168 SU 12Y P16 B2 277 2018 277 113451 38
Pussonce (1) Surface Volume fulces of Débit d'air Acousique Ventilateurs Moleurs (3) Classe énergétic Longueur totale Poids ne! Modélés Pussonce (1) Surface Yolume fulces of	(CUPS Ip(2) Iw Ø 800 QU> DI1 = 15K	m2 dm3 m3/h d8(A) Nb W tot. mm kg kW m2 dm3 m3/h d8(A)	181,2 538 74 57385 35 67 8 1458 A 5112 847 SU 16Y P12 B2 267,2 1514 208 59811 30	189,2 897 123 45550 23 60 8 791 A 8433* 1083 SU12Y P12A1 271,8 807 111 84078	203,0 1009 138 47193 34 66 6 1077 A 6312 934 SU 161 P16 A 286,5 1076 148 83827	205.3 841 115 55581 29 61 10 997 A 7998' 1188 287.4 1177 162 77813	205,6 673 92 67203 35 67 8 1441 A 6342 555 Y SU 12 1 P10 B 293,0 1261 173	211,8 1345 185 44477 34 66 6 1093 A 6312 1042 Y SU11 2 P12 0 308 10 13 3 933	214,9 807 111 60620 30 62 12 1214 A 7512 1281 227 SU BI PI 85 33 33 18 8 :	222,7 1261 173 49842 29 61 10 1012 A 7998* 1317 116Y S 4 82 P 11.8 766	226,5 673 62 71732 36 68 10 1835 A 6312 1075 U12Y 14 A1 1317,1 942 129 03424	230,9 1211 166 52470 30 62 12 1222 A 7512 1433 501.6Y 216 B1 328 A 1346 185 85729	234,A 1009 138 56730 35 67 8 1472 A 6342 1057 SU 16Y, P16 B2 356,3 2018 277 79748	246,3 1009 138 6607 30 62 12 1197 A 9342 1418 SU 12Y P14 B1 359,9 1177 162 108865	250,7 942 129 70724 30 62 14 1416 A 8712 1446 \$U.12Y PIÓB1 411.3 1346 185 124417	257,1 841 115 77760 35 68 10 1801 A 7778* 1188 SU 12Y P16 B2 2018 277 113451
Pusance (1) Surface Volume fuces of Débit d'ar Accuraque Ventiateurs Moteurs (3) Classe énergéti Longueur talde Poids not Pusance (1) Surface Volume fuces of Débit d'ar Accuraçue	1p(2) 1w Ø800 Q≠> D11 = 15K 1p(2) 1w	m2 dm3 m3/h d8(A) Nb W tot. mm kg kW m2 dm3 m3/h	181,2 538 74 57385 35 67 8 1458 A 5112 869 SU 16Y P12 B2 267,2 1514 208 59811	189,2 897 123 45550 23 60 8 791 A 8433* 1083 SU12Y P12A1 271,8 807 111 84078 37	203,0 1009 138 47193 34 66 6 1077 A 6312 934 SU 161 P16 A 286,5 1076 148 83827 31	205.3 841 115 55581 29 61 10 997 A 7998' 1188 287.4 1177 162 77813	205,6 673 92 62203 35 67 8 1441 A 6342 955 7 SU-12 1 P10 8 293,6 1261 173 3 70913	211,8 1345 185 44477 34 66 6 1093 A 6312 1042 Y SU11 2 P12 0 308 10 13 3 933 3	214,9 807 111 60620 30 62 12 1214 A 7512 1281 227 SU BI PI 85 339 188 77	222,7 1261 173 49842 29 61 10 1012 A 7998* 1317 116Y S 4 82 P 11.8 766 242 27779 1 330	226,5 673 62 71732 36 68 10 1835 A 6312 1075 U12Y 14 A1 19 129 03424 37	230,9 1211 166 52470 30 62 12 1222 A 7512 1433 328,4 1346 185 85729 31	234,4 1009 138 56730 35 67 8 1472 A 6342 1057 SU 169; P16 82 356,3 2018 277 79748 31	246,3 1009 138 6607 30 62 12 1197 A 9342 1418 SU 12Y P14 B1 359,9 1177 162 108865 37	250,7 942 129 70724 30 62 14 1416 A 8712 146 5U 12Y P16 B1 411.3 1346 185 124417 38 70 16	257,1 841 115 77760 35 68 10 1801 A 7778* 1188 SU 12Y P16 B2 2018 277 113451 38
Pussonos (1) Surface Volume fulces di Débit d'air Acousique Ventilateurs Maleurs (3) Classe énergétis Langueur tatale Poids no! Modéles Aussonos (1) Surface Volume fulces di Débit d'air Acousique Vantilateurs	(CUPS Ip(2) Iw Ø 800 QU> DI1 = 15K	m2 dm3 m3/h d8(A) Nb W tot. mm kg kW m2 dm3 m3/h d8(A)	181,2 538 74 57385 35 67 8 1458 A 5112 869 SU 16Y P12 B2 267,2 1514 208 59811 30 62	189,2 897 123 45550 23 60 8 791 A 8438* 1083 SU.12Y P12A1 271,8 807 111 84078 37	203,0 1009 138 47193 34 66 6 1077 A 6312 934 SU 161 P16 A 286,5 1076 148 83827 31 63	205.3 841 115 55581 29 61 10 997 A 7998' 1188 287.4 1177 162 77813 30 62 14	205,6 673 92 67203 35 67 8 1441 A 6342 555 Y SU 12 170 173 30 63 63 1261 173 30 63 63 1261	211,8 1345 185 44477 34 66 6 1093 A 6312 1042 Y SU11 2 P12 0 308 10 13 3 933 6	214,9 807 111 60620 30 62 12 1214 A 7512 1281 227 SU BI PI 85 33 33 18 8 : 12 67 7	222,7 1261 173 49842 29 61 10 1012 A 7998* 1317 116Y S 4 82 P 11.8 765 242 2779 1 33 62 14	226,5 673 62 71732 36 68 10 1835 A 6312 1075 U12Y 14 A1 129 03424 37 69	230,9 1211 166 52470 30 62 12 1222 A 7512 1403 501.6Y P16 B1 328,4 1346 185 85729 31 63	234,4 1009 138 56730 35 67 8 1472 A 6342 1057 \$U 169; P16 82 356,3 2018 277 79748 31 63	246,3 1009 138 6607 30 62 12 1197 A 9342 1418 SU-12Y P14 B1 359,9 1177 162 108865 37 69	250,7 942 129 70724 30 62 14 1416 A 8712 1446 5U.12Y P16 B1 411.3 1346 185 124417 38 70	257,1 841 115 77760 35 68 10 1801 A 7778* 1188 SU 12Y P16 B2 2018 277 113451 38 70
Pusance (1) Surface Volume fuces of Débit d'ar Accusaque Ventiateurs Moteurs (3) Classe énergéti Longueur totale Poids not Modèles Accusaque Volume fuces of Débit d'ar Accusaque Ventiateurs Modèles Accusaque Ventiateurs Modèles Accusaque	DI1 = 15K	m2 dm3 m3/h d8(A) Nb W tot. mm kg kW m2 dm3 m3/h d8(A)	181,2 538 74 57385 35 67 8 1448 A 5112 897 SU 16Y P12 B2 267,2 1514 208 59811 30 62 12 1215	189,2 897 123 45550 23 60 8 791 A 8433* 1083 SU12Y P12A1 271,8 807 111 84078 37 69 12	203,0 1009 138 47193 34 66 6 1077 A 6312 934 SU 161 P16 A 286,5 1076 148 83827 31 63	205.3 841 115 55581 29 61 10 997 A 7998' 1188 287.A 1177 162 77813 30 62	205,6 673 92 67203 35 67 8 1441 A 6342 555 Y SU 12 170 173 30 63 63 1261 173 30 63 63 1261	211,8 1345 185 44477 34 66 6 1093 A 6312 1042 Y SU11 2 P12 0 308 10 13 3 933 6	214,9 807 111 60620 30 62 12 1214 A 7512 1281 227 SU BI PI 85 339 1 8 7 7 9 2 61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	222,7 1261 173 49842 29 61 10 1012 A 7998* 1317 116Y S 4 82 P 11.8 765 242 2779 1 33 62 14	226,5 673 62 71732 36 68 10 1835 A 6312 1075 U12Y 14 A1 129 03424 37 69 14	230,9 1211 166 52470 30 62 12 1222 A 7512 1403 501.6Y P16 B1 328,4 1346 185 85729 31 63 16	234,4 1009 138 56730 35 67 8 1472 A 6342 1057 SU 16Y, P16 B2 356,3 2018 277 79748 31 63 16	246,3 1009 138 6607 30 62 12 1197 A 9342 1418 SU 12Y P14 B1 359,9 1177 162 108865 37 69 14	250,7 942 129 70724 30 62 14 1416 A 8712 146 5U 12Y P16 B1 411.3 1346 185 124417 38 70 16	257,1 841 115 77760 35 68 10 1801 A 7078* 1188 SU 12Y P16 B2 2018 277 113451 38 70 16 2944 A
Puissonce (1) Surface Volume fubes of Débit d'air Acoustique Ventitatours Moleurs (3) Classe énergétit Longueur tatale Poids net Modélés Aussonce (1) Surface Volume fubes of Débit d'air Acoustique Vontitateurs Moleurs (3) Classe énergétit Longueur tatale Poids net	DIT = 15K	m2 dm3 m3/h d8(A) Nb W tot. mm kg kW m2 dm3 m3/h d8(A) Nb	181,2 538 74 57385 35 67 8 1458 A 5112 847 SU 16Y P12 B2 267,2 1514 208 59811 30 62 12 1215 A	189,2 897 123 45550 23 60 8 791 A 2438* 1083 SU.12Y P12.A1 271.8 807 111 84078 37 69	203,0 1009 138 47193 34 66 6 1077 A 6312 934 SU 161 P16 A 286,5 1076 148 83827 31 63 16 1618	205.3 841 115 55581 29 61 10 997 A 7998' 1188 287.A 1177 162 77813 30 62 14	205,6 673 92 67203 35 67 8 1441 A 6342 555 7 8 1261 173 30 68 10 1845 A	211,8 1345 185 44477 34 66 6 1093 A 6312 1042 Y SU11 2 P12 0 308 10 13 3 933 6 11	214,9 807 111 60620 30 62 12 1214 A 7512 1281 227 SU B1 P1 85 339 1 8 7 7 9 2 2	222,7 1261 173 47842 27 61 10 1012 A 7793* 1317 167 S 4 82 P 11.8 765 242 27779 1 39 62 14 417 A	226,5 673 62 71732 36 68 10 1835 A 6312 1075 U12Y 14 A1 129 03424 37 69 14 2569	230,9 1211 166 52470 30 62 12 1222 A 7512 1403 328,4 1346 185 85729 31 63 16	234,4 1009 138 56730 35 67 8 1472 A 6342 1057 SU 16Y, P16 B2 356,3 2018 277 79748 31 63 16 1619	246,3 1009 138 6607 30 62 12 1197 A 9342 1418 SU 12Y P14 B1 359,9 1177 162 108865 37 69 14 2521	250,7 942 129 70724 30 62 14 1416 A 8712 1446 \$113 1346 185 124417 38 70 16 2831	257,1 841 115 77760 35 68 10 1801 A 7978* 1188 SU 12Y P16 B2 277 113451 38 70 16 2944
Pussonce (1) Surface Volume fulces of Détal d'air Acousique Ventilateurs Moleurs (3) Classe énergétis Langueur tatale Pods no! Modéles Pods no! Volume fulces of Détal d'air Acousique Volume fulces of	DIT = 15K	m2 dm3 m3/h d8(A) Nb W tot. mm kg kW m2 dm3 m3/h d8(A)	181,2 538 74 57385 35 67 8 1448 A 5112 897 SU 16Y P12 B2 267,2 1514 208 59811 30 62 12 1215	189,2 897 123 45550 23 60 8 791 A 2433* 1083 SU.12Y P12.A1 271.8 807 111 84078 37 69 12 2202 A	203,0 1009 138 47193 34 66 6 1077 A 6312 934 SU 161 P16 A 286,5 1076 148 83827 31 63 16 1618 A	205.3 841 1115 55581 29 61 10 997 A 7998' 1188 287.A 1177 162 77813 30 62 14 1396 A	205,6 673 92 62273 35 67 8 1441 A 6342 955 1261 173 30 68 10 1845 A	211,8 1345 185 44477 34 66 6 1093 A 6312 1042 Y SU11 2 P12 0 308 10 13 3 933 6 11 12 14 14 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	214,9 807 111 60620 30 62 12 1214 A 7512 1281 227 SU BI PI 85 339 1 8 7 7 9 2 61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	222,7 1261 173 49842 29 61 10 1012 A 7998* 1317 169' S 4 82 P 11.8 765 242 2779 1 33 62 14 417 A	226,5 673 62 71732 36 68 10 1835 A 6312 1075 14 A1 129 03424 37 69 14 2569 A	230,9 1211 166 52470 30 62 12 1222 A 7512 1403 328,4 1346 185 85729 31 63 16 1596 A	234,4 1009 138 56730 35 67 8 1472 A 6342 1057 SU 169; P16 82 356,3 2018 277 79748 31 63 16 1619 A	246,3 1009 138 6607 30 62 12 1197 A 9342 1418 SU 12Y P14 B1 359,9 1177 162 108865 37 69 14 2521 A	250,7 942 129 70724 30 62 14 1416 A 8712 1446 SU12Y P16 B1 411.3 1346 185 124417 38 70 16 2831 A	257,1 841 115 77760 35 68 10 1801 A 7978* 1188 SU 12Y, P16 B2 277 113451 38 70 16 2944 A

\$U12Y: 400 V/3/50 Hz - 200 W moc - 0.48 A max (4)

\$U16Y: 400 V/3/50 Hz - 106 W max - 0.25 A max (4)


	MCI	BXT	BAE	M60	M25	M26	MTH	IRP	C2V	SCU	RE	ECB	CMP	RP1	RP2	RP3	MEC
NEOSTAR	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11600121.21			•		- 10° AUT-1-1-1						-9103#31 T						

BP MONTEUR DEPANNEUR EN FROID ET CLIMATISATION E.1 – B (U12) Dossier technique Session 2011

DT 12/17

⁽¹⁾ Les puissances sont enpirmées en NW sous DTT = 15 K ou RECTA. Bies sont égales ous puissances mesurées conformément aux conditions de la norme CEN EN 327.
L'écat 1 DTT conseignant à la différence entre la température ambionte et la température de condensation considéré àgale à l'équivalent presson à rentée du condenseur.
(2) Pression soncre en alg(A) mesurée à 10 m, sufoire de mesure paratitéppédique, en champ libre sur plan réfléchissant, donnée à tine indicat. Valeurs mesurées aux conditions nominaires de lonoisomement baltisés propre, sous tension nominaire.
(3) Puissance absorbée par Tensemble des moleurs.
(4) Régioge des protections contre les surcharges.

^{*} Rocockdements oblés coposés

Détendeurs thermostatiques,

CONDITIONS DETERMINANTES POUR LA SELECTION DU DETENDEUR

Données

Fluide	R404A
Capacité de l'évaporateur	2,38 [kW]
Température d'évaporation (θ ₀)	+ 3 [°C]
Température de condensation (θ _k)	45 [°C]
Température liquide à l'entrée du détendeur	28 [°C]
Chute de pression totale dans l'évaporateur	1 [bar]
Plage de températures	N : -40 à 10 [°C]
Egalisation	Externe
MOP	NON
Surchauffe statique	4 [K]
Corps de vanne	Passage équerre
Type de raccord	Flare x Flare
Chute de pression dans la vanne (ΔP)	13 [bar]
Sous refroidissement total (Su)	17 [K]

BP MONTEUR DEPANNEUR EN FROID ET CLIMATISATION E.1 – B (U12) Dossier technique Session 2011 DT 14/17

Fiche technique

Détendeurs thermostatiques types T 2 et TE 2

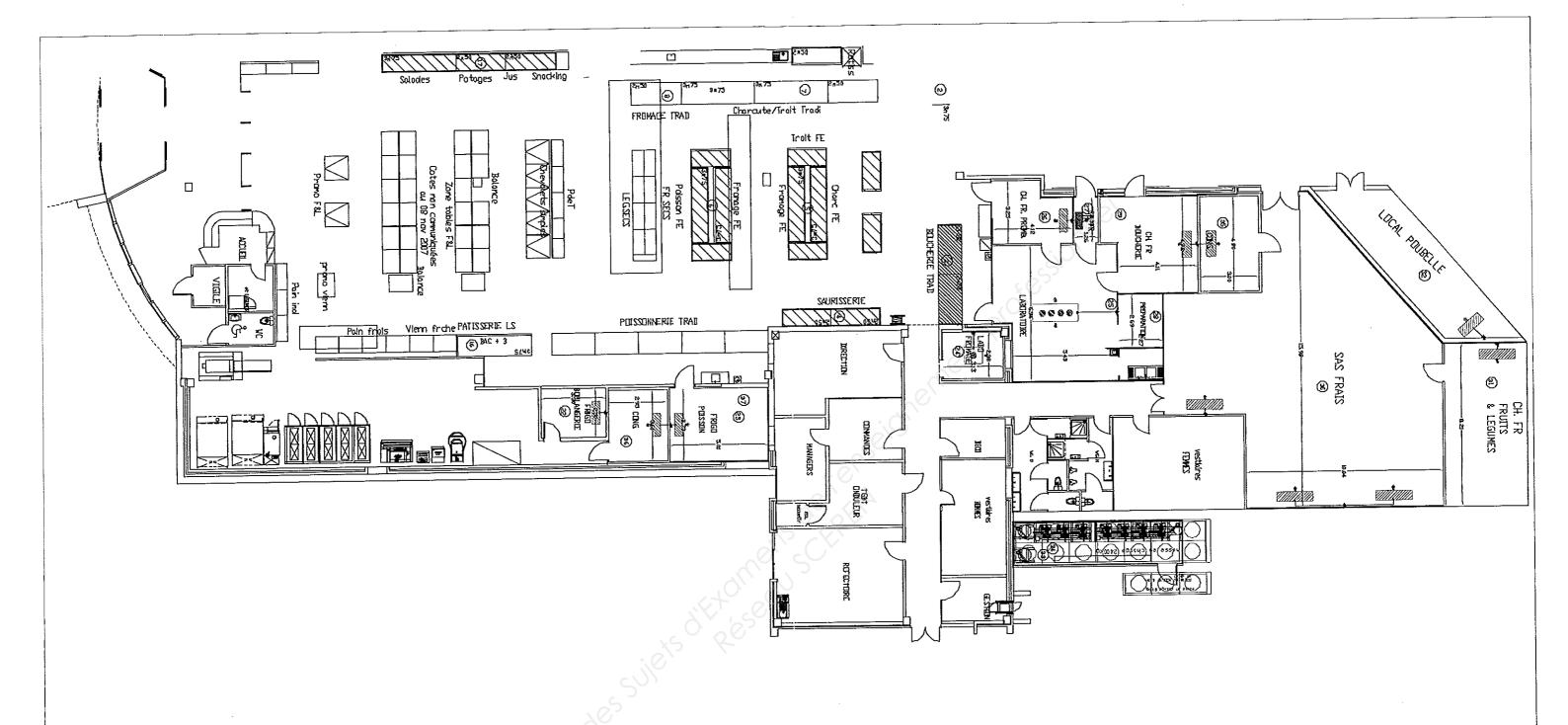
Capacité

R404A / R507

Capacité en kW p	our la p	lage N:	-40°C2	1+10°€															
	Nº de		Chute de pressione dans la vanne ∆p bar									Chute de pressione dans la vanne Δp bar							
Type de vanne	orifice	2	4	6	8	10	12	14	16	2	4	6	8	10	12	14	16		
	1		Tem	perature	d'évapo	ration +	10°C					Tempe	rature d'	évaporat	ion 0°C				
TS 2/TES 2 - 0.11	ox	0.28	0.35	0.40	0,42	0.43	0.43	0.42	0.41	0.30	0.37	0.41	0.42	0.43	0.43	0.43	0.41		
TS 2/TES 2 - 0.21	00	0.67	0.82	0.90	0.94	0.96	0.96	0.93	0.90	0,68	0.80	0.87	0.90	0.92	0,93	0.91	0.87		
TS 2/TES 2 - 0.45	01	1.7	2,1	2.3	2.4	2.5	2.5	2.4	2.3	1.5	1.9	2.0	2.1	2.2	2.2	2.2	2.1		
T\$ 2/TE\$ 2 - 0.6	02	2.3	3.0	3.4	3.6	3.7	3.7	3.7	3.6	2.1	2.6	3.0	3.1	3.2	3.3	3.2	3.1		
TS 2/TES 2 - 1.2	03	4,2	5.4	6.0	6.4	6.6	6.7	6,6	6.4	3.7	4.7	5.3	5.6	5.8	5.8	5.7	5.6		
TS 2/TES 2 - 1.7	04	6.2	8.1	9.1	9.7	10.0	10.0	9,8	9.6	5.5	7.1	7.9	8.3	8.6	8.6	8.5	8.3		
TS 2/TES 2 • 2.2	05	7.9	10.2	11.4	12.2	12.5	12.6	12.3	12.0	7.0	8.9	10.0	10.5	10.8	10.9	10.8	10.4		
TS 2/TES 2 - 2.6	06	9.7	12.5	14.0	14.9	15.3	15.3	15.1	14.7	8.6	10.9	12.2	12.9	13.2	13.3	13.1	12.7		
		· · · · · · · · · · · · · · · · · · ·	Tem	perature	d'évapo	ration -	10°C			Temperature d'évaporation ~20°C									
TS 2/TES 2 - 0.11	OX	0.30	0.37	0.40	0.42	0.42	0.42	0.41	0.41		0.35	0.38	0.40	0.39	0.40	0.39	0.38		
TS 2/TES 2 - 0.21	00	0.65	0.76	0.82	0.84	0.87	0.87	0.85	0.83		0.70	0.75	0.77	0.79	0.79	0.79	0.76		
TS 2/TES 2 - 0.45	01	1,3	1.6	1.7	1.8	1.8	1.9	1.8	1.8		1.3	1.5	1.5	1.5	1.5	1.5	1.5		
TS 2/TES 2 - 0.6	02	1,8	2.2	2.5	2.6	2.7	2.7	2.7	2.6	l	1.9	2,0	2.1	2.2	2.2	2.2	2.1		
TS 2/TES 2 - 1.2	03	3,1	4.0	4.5	4.7	4.8	4.8	4.8	4.7	ł	3,3	3.7	3.8	3.9	3.9	3.9	3.8		
TS 2/TES 2 - 1.7	04	4.7	6.0	6.6	7.0	7.1	7.2	7.1	6.9	l	4.9	5.4	5.6	5.8	5.8	5.7	5.6		
TS 2/TES 2 - 2.2	05	5.9	7.6	8.4	8.8	9.0	9.1	9.0	8.7	ŀ	6.2	6.9	7.2	7.3	7.3	7.2	7.1		
TS 2/TES 2 - 2.6	06	7.3	9.3	10.3	10.8	11.0	11.1	11.0	10.7	<u> </u>	7.6	8.4	8.8	8.9	8.9	8,8	8.6		
			Ten	perature	e d'évapo	oration -	30°C			Temperature d'évaporation -40°C									
TS 2/TES 2 - 0.11	οX			0,35	0.37	0.36	0.37	0.36	0.35			0.32	0.33	0.33	0.33	0.32	0.32		
TS 2/TES 2 - 0.21	00		-	0.67	0.70	0.70	0.70	0.69	0.67]	ļ	0,60	0.61	0,62	0.61	0.60	0.59		
TS 2/TES 2 - 0.45	01		1	1.2	1.2	1,2	1.2	1.2	1.2		1	0.92	0.96	0,97	0.96	0.94	0.91		
TS 2/TES 2 - 0.6	02		1	1.6	1.7	1.7	1.7	1.7	1.6		1	1.3	1.3	1.3	1.3	1,3	1.2		
TS 2/TES 2 - 1.2	03		1	2.9	3.0	3.1	3.1	3.0	2.9		1	2.3	2.4	2.4	2.4	2.3	2.2		
TS 2/TES 2 - 1.7	04			4.3	4,5	4.5	4.5	4.5	4.4	1		3.3	3.5	3.5	3.5	3.4	3.3		
TS 2/TES 2 - 2.2	05		1	5.5	5.7	5.7	5.7	5.7	\$.5	1		4.3	4.4	4.5	4.4	4.4	4.2		
TS 2/TES 2 - 2.6	06			6.7	6.9	7.0	7.0	6.9	6.8		L	5.2	5.4	5.5	5.4	5.3	5.2		

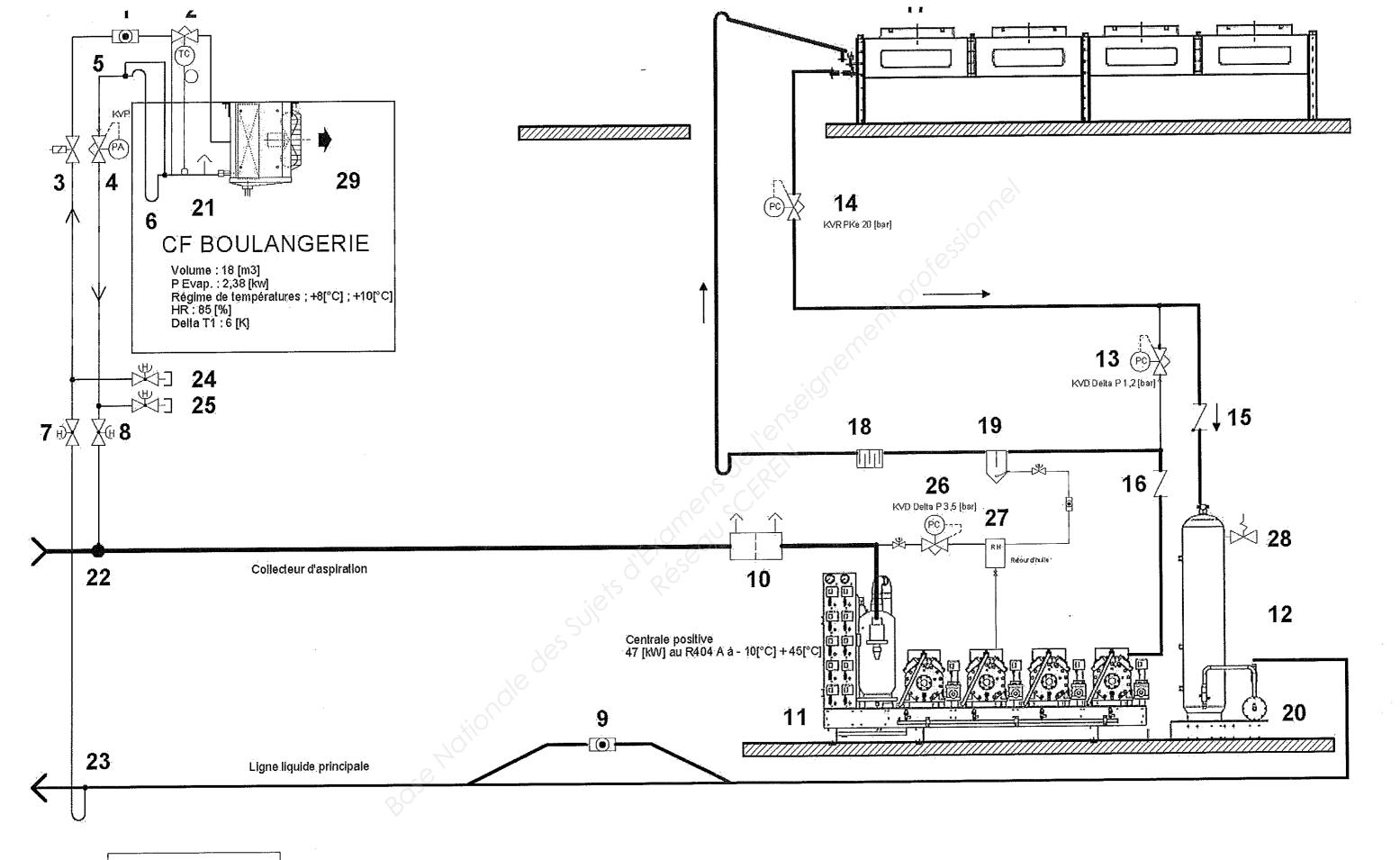
Capacité en kW pour la plage B: −60°C à −25°C

	N° de Chute de pressione dans la vanne Δp bar							Chute de pressione dans la vanne Δp bar										
Type de vanne	orifice	2	4	6	8	10	12	14	16	2	4	6	8	10	12	14	16	
	Temperature d'évaporation –25°C										Temperature d'évaporation −30°C							
TS 2/TES 2 - 0.21	00	0.57	0.67	0.72	0.73	0.74	0.85	0.74	0.71	0.53	0.64	0.67	0.70	0.70	0.70	0.69	0.67	
TS 2/TES 2 - 0.45	01	0.98	1.2	1.3	1.5	1.4	1.4	1.4	1.31	0.88	1.07	1.2	1.2	1.2	1.2	1.2	1.2	
TS 2/TES 2 - 0.6	02	1.3	1.7	1.8	1.9	1.9	1,9	1.9	1.9	1.2	1.5	1.6	1.7	1.7	1.7	1.7	1.5	
TS 2/TES 2 - 1.0	03	2.4	3,0	3,3	3.4	3.5	3.5	3.4	3.3	2.1	2.7	2.9	3.0	3.1	3.1	3.0	2.9	
TS 2/TES 2 - 1.4	04	3.5	4.4	4.8	5.0	5.1	5.1	5.1	4.9	3.1	3.9	4.3	4.5	4.5	4.5	4,5	4.4	
TS 2/TES 2 - 1.7	05	4.4	5,6	6.1	6.4	6.5	6.5	6.4	6.3	3.9	4,9	5.5	5.7	5.7	5.7	5.7	5.5	
TS 2/TES 2 - 1.9	06	5,4	6.8	7.5	7.8	7.9	7.9	7.9	7.6	4.8	6.1	6.7	6,9	7.0	7.0	6.9	6.8	
		LLI.	Tem	perature	d'évapo	ration -	40°C			Temperature d'évaporation –50°C								
TS 2/TES 2 · 0.21	00		0.56	0.60	0.61	0.62	0.61	0,60	0.59		0.49	0.53	0.54	0.54	0.53	0.52	0.50	
TS 2/TES 2 - 0.45	01		0.85	0.92	0.96	0.97	0.96	0.94	0.91	1	0.51	0.57	0.60	0.60	0.60	0.60	0.59	
TS 2/TES 2 - 0.6	02		1.2	1.3	1.3	1,3	1.3	1.3	1.2	l	0.91	0.99	1.0	1.0	1.0	0.98	0.95	
TS 2/TES 2 - 1.0	03		2,1	2.3	2,4	2,4	2.4	2.3	2.2		1.6	1.8	1.8	1.8	1,8	1.8	1.7	
TS 2/TES 2 - 1.4	04		3.0	3.3	3.5	3.5	3.5	3.4	3.3		2,4	2.6	2,7	2,7	2.7	2.6	2.6	
TS 2/TES 2 - 1.7	05		3.9	4.3	4.4	4.5	4.4	4.4	4.2		3.0	3.3	3.4	3.5	3,4	3.4	3.3	
TS 2/TES 2 - 1.9	06		4.7	5.2	5.4	5.5	5.5	5.3	5.2		3.7	4.0	4.2	4.2	4.2	4.1	4.0	
	· · · · · · · · · · · · · · · · · · ·		Tem	perature	d'évapo	ration -	60°C						10					
TS 2/TES 2 - 0.21	00		l	0.46	0.48	0.47	0.45	0.45	0.43			(), ·					
TS 2/TES 2 - 0.45	.01			0,58	0.60	0.60	0,58	0.56	0.54			()		l				
TS 2/TES 2 - 0.6	02			0.78	08.0	0.80	0.78	0.75	0.72			\bigcirc		i				
TS 2/TES 2 - 1.0	03			1.4	1.4	1.4	1.4	1.4	1.3	l	(X)		1					
TS 2/TES 2 - 1.4	04			2,0	2.1	2.1	2.1	2.0	2.0	l		1	1					
TS 2/TES 2 - 1.7	05			2.6	2.7	2.7	2.7	2.6	2.5	_		l						
TS 2/TES 2 - 1.9	06			3.2	3,3	3.3	3.3	3.2	3.1				<u> </u>	<u> </u>			L	


Correction pour sous-refroidissement Δt_{...}

La cap. de l'évaporateur utilisée doit être corrigée si le sous-refroidissement s'écarte de la valeur 4 K. La capacité corrigée est obtenue en divisant la cap. de l'évapo, par le facteur de corr. ci-dessous.

Attention: Un sous-refroidissement trop faible risque d'entrainer la formation de


										,
Δt,	4 K	10 K	15 K	20 K	25 K	30 K	35 K	40 K	45 K	50 K
Facteur de correction	1.00	1.10	1.20	1.29	1.37	1,46	1,54	1.63	1.70	1.78

BP MONTEUR DEPANNEUR EN FROID ET CLIMATISATION E.1 – B (U12) Dossier technique Session 2011 15/17

B.P. M.D.F.C. SESSION 2011

SGI DU MAGASIN

B.P. M.D.F.C. SESSION 2011